g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
↳ QTRS
↳ DependencyPairsProof
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
F'2(triple3(a, b, c), A) -> FOLDB2(triple3(s1(a), 0, c), b)
F2(t, x) -> F'2(t, g1(x))
FOLDC2(t, s1(n)) -> F2(foldC2(t, n), C)
F2(t, x) -> G1(x)
FOLDB2(t, s1(n)) -> FOLDB2(t, n)
F''1(triple3(a, b, c)) -> FOLDC2(triple3(a, b, 0), c)
FOLDC2(t, s1(n)) -> FOLDC2(t, n)
F'2(triple3(a, b, c), A) -> F''1(foldB2(triple3(s1(a), 0, c), b))
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
FOLDB2(t, s1(n)) -> F2(foldB2(t, n), B)
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F'2(triple3(a, b, c), A) -> FOLDB2(triple3(s1(a), 0, c), b)
F2(t, x) -> F'2(t, g1(x))
FOLDC2(t, s1(n)) -> F2(foldC2(t, n), C)
F2(t, x) -> G1(x)
FOLDB2(t, s1(n)) -> FOLDB2(t, n)
F''1(triple3(a, b, c)) -> FOLDC2(triple3(a, b, 0), c)
FOLDC2(t, s1(n)) -> FOLDC2(t, n)
F'2(triple3(a, b, c), A) -> F''1(foldB2(triple3(s1(a), 0, c), b))
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
FOLDB2(t, s1(n)) -> F2(foldB2(t, n), B)
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
F'2(triple3(a, b, c), A) -> FOLDB2(triple3(s1(a), 0, c), b)
F2(t, x) -> F'2(t, g1(x))
FOLDC2(t, s1(n)) -> F2(foldC2(t, n), C)
FOLDB2(t, s1(n)) -> FOLDB2(t, n)
F''1(triple3(a, b, c)) -> FOLDC2(triple3(a, b, 0), c)
FOLDC2(t, s1(n)) -> FOLDC2(t, n)
F'2(triple3(a, b, c), A) -> F''1(foldB2(triple3(s1(a), 0, c), b))
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
FOLDB2(t, s1(n)) -> F2(foldB2(t, n), B)
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FOLDC2(t, s1(n)) -> F2(foldC2(t, n), C)
FOLDC2(t, s1(n)) -> FOLDC2(t, n)
Used ordering: Polynomial interpretation [21]:
F'2(triple3(a, b, c), A) -> FOLDB2(triple3(s1(a), 0, c), b)
F2(t, x) -> F'2(t, g1(x))
FOLDB2(t, s1(n)) -> FOLDB2(t, n)
F''1(triple3(a, b, c)) -> FOLDC2(triple3(a, b, 0), c)
F'2(triple3(a, b, c), A) -> F''1(foldB2(triple3(s1(a), 0, c), b))
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
FOLDB2(t, s1(n)) -> F2(foldB2(t, n), B)
POL(0) = 0
POL(A) = 0
POL(B) = 0
POL(C) = 1
POL(F2(x1, x2)) = x1
POL(F'2(x1, x2)) = x1
POL(F''1(x1)) = x1
POL(FOLDB2(x1, x2)) = x1
POL(FOLDC2(x1, x2)) = x1 + x2
POL(f2(x1, x2)) = x1 + x2
POL(f'2(x1, x2)) = x1 + x2
POL(f''1(x1)) = x1
POL(foldB2(x1, x2)) = x1
POL(foldC2(x1, x2)) = x1 + x2
POL(g1(x1)) = x1
POL(s1(x1)) = 1 + x1
POL(triple3(x1, x2, x3)) = x3
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
g1(B) -> A
foldB2(t, 0) -> t
g1(A) -> A
g1(B) -> B
g1(C) -> C
foldC2(t, 0) -> t
g1(C) -> B
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f2(t, x) -> f'2(t, g1(x))
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
g1(C) -> A
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F'2(triple3(a, b, c), A) -> FOLDB2(triple3(s1(a), 0, c), b)
F2(t, x) -> F'2(t, g1(x))
FOLDB2(t, s1(n)) -> FOLDB2(t, n)
F''1(triple3(a, b, c)) -> FOLDC2(triple3(a, b, 0), c)
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
F'2(triple3(a, b, c), A) -> F''1(foldB2(triple3(s1(a), 0, c), b))
FOLDB2(t, s1(n)) -> F2(foldB2(t, n), B)
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
F'2(triple3(a, b, c), A) -> FOLDB2(triple3(s1(a), 0, c), b)
F2(t, x) -> F'2(t, g1(x))
FOLDB2(t, s1(n)) -> FOLDB2(t, n)
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
FOLDB2(t, s1(n)) -> F2(foldB2(t, n), B)
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FOLDB2(t, s1(n)) -> FOLDB2(t, n)
FOLDB2(t, s1(n)) -> F2(foldB2(t, n), B)
Used ordering: Polynomial interpretation [21]:
F'2(triple3(a, b, c), A) -> FOLDB2(triple3(s1(a), 0, c), b)
F2(t, x) -> F'2(t, g1(x))
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
POL(0) = 0
POL(A) = 0
POL(B) = 0
POL(C) = 0
POL(F2(x1, x2)) = x1
POL(F'2(x1, x2)) = x1
POL(FOLDB2(x1, x2)) = x1 + x2
POL(f2(x1, x2)) = x1
POL(f'2(x1, x2)) = x1
POL(f''1(x1)) = x1
POL(foldB2(x1, x2)) = x1
POL(foldC2(x1, x2)) = x1
POL(g1(x1)) = 0
POL(s1(x1)) = 1 + x1
POL(triple3(x1, x2, x3)) = x2
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
foldB2(t, 0) -> t
foldC2(t, 0) -> t
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f2(t, x) -> f'2(t, g1(x))
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F'2(triple3(a, b, c), A) -> FOLDB2(triple3(s1(a), 0, c), b)
F2(t, x) -> F'2(t, g1(x))
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
F2(t, x) -> F'2(t, g1(x))
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F'2(triple3(a, b, c), B) -> F2(triple3(a, b, c), A)
Used ordering: Polynomial interpretation [21]:
F2(t, x) -> F'2(t, g1(x))
POL(A) = 0
POL(B) = 1
POL(C) = 1
POL(F2(x1, x2)) = x2
POL(F'2(x1, x2)) = x2
POL(g1(x1)) = x1
POL(triple3(x1, x2, x3)) = 0
g1(B) -> A
g1(C) -> B
g1(A) -> A
g1(B) -> B
g1(C) -> C
g1(C) -> A
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F2(t, x) -> F'2(t, g1(x))
g1(A) -> A
g1(B) -> A
g1(B) -> B
g1(C) -> A
g1(C) -> B
g1(C) -> C
foldB2(t, 0) -> t
foldB2(t, s1(n)) -> f2(foldB2(t, n), B)
foldC2(t, 0) -> t
foldC2(t, s1(n)) -> f2(foldC2(t, n), C)
f2(t, x) -> f'2(t, g1(x))
f'2(triple3(a, b, c), C) -> triple3(a, b, s1(c))
f'2(triple3(a, b, c), B) -> f2(triple3(a, b, c), A)
f'2(triple3(a, b, c), A) -> f''1(foldB2(triple3(s1(a), 0, c), b))
f''1(triple3(a, b, c)) -> foldC2(triple3(a, b, 0), c)